MMP12244

2.0 TO 12.0 GHz COUGAR MIXERPAK DOUBLE-BALANCED MIXER

SPECIFICATIONS

Guaranteed

-55 to +85 °C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Port</th>
<th>Frequency (GHz)</th>
<th>Typ. (dB)</th>
<th>Max. (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSB Conversion Loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSB Noise Figure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conversion Comp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desensitization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third Order Intercept</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third Order Intercept</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Measured in a 50-ohm system with nominal LO drive of +16 dBm as a downconverter.

ABSOLUTE MAXIMUM RATING

| Storage Temperature | -65 to +150 °C |
| Peak RF Input Power All Ports | +24 dBm @ 25 °C | derated to +19 dBm @ 100 °C |

CONVERTION LOSS

-5.5 dB

LO Drive (nominal)

+16.0 dBm

Third Order Intercept

+19.0 dBm

HIGH ISOLATION (LO to RF)

35.0 dB

CONVERTION COM.

DES ENSITIZATION

ISOLATION

HARMONIC INTERMODULATION PRODUCTS (single tone)

HARMONIC INTERMODULATION PRODUCTS

PRODUCT MARKING

PRODUCT CONNECTOR

PRODUCT CHAMFER

PRODUCT SEAL

PRODUCT PACKAGE

DIMENSIONS ARE IN INCHES [MILLIMETERS]

TELEDYNE MICROWAVE SOLUTIONS

650-691-9800 • Fax: 650-962-6845 • Updates: www.teledynemicrowave.com • microwave@teledyne.com
Some variation in the R-port VSWR will occur as a function of the L-port frequency as shown above.

VSWR of the I- and R-ports in a 50-ohm system. Some variation in the R-port VSWR will occur as a function of the L-port frequency as shown above.

Isolation (L to I) vs Frequency

Isolation (L to R) vs Frequency

Isolation (R to I) vs Frequency

L-Port VSWR vs Frequency

R-Port VSWR vs Frequency

I-Port VSWR vs Frequency

Conversion Loss vs LO Drive Level

Conversion Loss vs RF Frequency

Relative IF Response

Intercept Point

Power Input at 1 dB Compression

Conversion loss of the mixer when used in an SSB system. The frequency ordinate refers to the R-port (f_R) with f_I at 30 MHz.

VSWR vs Frequency

F_L = +16 dBm

F_L = 6.0 GHz @ +16 dBm

F_L = 6.0 GHz, Low-Side LO

F_L = 6.0 GHz @ +16 dBm

F_L = 6.0 GHz, Hi-Side LO

F_L = 6.0 GHz

F_L = 6.03 GHz, Hi-Side LO

The minimum recommended drive level is +10 dBm. The maximum recommended drive level is +30 dBm.

Hi-Side LO

Hi-Side LO

IF = 30 MHz

IF = 30 MHz

IP2

IP3

Hi-Side LO

Hi-Side LO

Hi-Side LO

Hi-Side LO

+16 dBm LO

1 Level of the f_L signal fed through to the R- and I-ports with respect to the level of the f_L signal at the L-port.

2 VSWR of the I- and R-ports in a 50-ohm system. Some variation in the R-port VSWR will occur as a function of the L-port frequency as shown above.

3 Conversion loss of the mixer when used in an SSB system. The frequency ordinate refers to the R-port (f_R) with f_I at 30 MHz.