SPECIFICATIONS

Typical Values

- **LO & RF**: 2.0 - 20.0 GHz
- **IF**: 0.001 - 6.0 GHz
- **Third Order I.P.**: +18.0 dBm
- **Conversion Loss**: 6.0 dB
- **LO Drive (nominal)**: +13.0 dBm
- **High Isolation (LO to RF)**: 30.0 dB

Cougard MixerPak - Seam Sealed Hermetic Package

Guaranteed

-55 to +85 °C

Parameter	**Port**	**Frequency (GHz)**	**Typ. (dB)**	**Max. (dB)**
SSB Conversion Loss	f_R	3.0 to 20.0	6.0	8.5
f_L	3.0 to 20.0	6.0	8.5	
SSB Noise Figure	f_R	DC to 4.0	6.0	8.5
f_L	2.0 to 20.0	7.0	8.5	
f_I	0.001 to 4.0	7.0	8.5	
f_I	4.0 to 6.0	8.5	9.5	

Conversion Comp. Desenitization

- **f_R**
 - Level = +7 dBm
 - Level = +5 dBm

- **f_R**
 - Level = +7 dBm

Isolation

| f_R at R | f_L at L | 2.0 to 10.0 | 35 | 20
| f_L at I | f_L at I | 2.0 to 10.0 | 30 | 20
| f_R at I | f_R at I | 2.0 to 6.0 | 30 | 20
| f_R at R | f_R at R | 14.0 to 20.0 | 30 | 20

| f_I at R | f_L at L | 10.0 to 20.0 | 25 | 15
| f_L at I | f_L at I | 10.0 to 20.0 | 20 | 15
| f_R at I | f_R at I | 2.0 to 20.0 | 25 | 15

Third Order Intercept

<table>
<thead>
<tr>
<th>LO</th>
<th>f_R</th>
<th>f_L</th>
<th>f_I</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO at $+$13 dBm</td>
<td>$+$16 dBm</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

*Measured in a 50-ohm system with nominal LO drive of +13 dBm as a downconverter.

Absolute Maximum Ratings

- **Storage Temperature**: -65 to +150 °C
- **Peak RF Input Power All Ports**: +23 dBm @ 25 °C
derate to +18 dBm @ 100 °C
TYPICAL PERFORMANCE

Isolation (L to I) vs Frequency

- **L-Port VSWR vs Frequency**

- **R-Port VSWR vs Frequency**

- **I-Port VSWR vs Frequency**

Conversion Loss vs LO Drive Level

Conversion Loss vs RF Frequency

Power Input at 1 dB Compression

Relative IF Response

Intercept Point

1. Level of the f_L signal fed through to the R- and I-ports with respect to the level of the f_L signal at the L-port.

2. VSWR of the I- and R-ports in a 50-ohm system. Some variation in the R-port VSWR will occur as a function of the L-port frequency as shown above.

3. Conversion loss of the mixer when used in an SSB system. The frequency ordinate refers to the R-port (f_R) with f_I at 30 MHz.